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I n  nematic homeotropic films (director n perpendicular to the horizontal limiting 
plates) heated from below, the distortion of the director which is coupled to the ordi- 
nary heat convection mechanism responsible for the Rayleigh-B6nard instability 
exerts a strongly stabilizing influence. Owing to the difference in time scales, an 
oscillatory instability results whose characteristics are investigated experimentally 
here. An inverted bifurcation with an associated hysteresis is also obtained and this 
was studied in some detail. A vertical magnetic field H is also used to align the sample. 
The decrease of the orientational time constant when H increases leads to marked 
changes in the overstable regime, which are well described by a simple analysis. 

1. Introduction 
The nematic liquid-crystal state is an interniediate or meso-phase obtained below 

the isotropic liquid phase in some liquids composed of elongated molecules. I n  the 
nematic phase the centres of gravity of the molecules are distributed randomly but the 
molecules are locally aligned around an average direction characterized by a unit 
vector, the director n(r). Uniform molecular alignment in space (n(r) = no) can be 
obtained by a surface treatment of the limiting surfaces of the cell containing the 
material. (However, not all geometries are suitable. I n  a cylindrical capillary tube 
with a molecular alignment perpendicular to the wall (homeotropic alignment) a line 
of defects develops along the axis of the cylinder which will affect the hydrodynamic 
behaviour.) One can also align the nematic along the direction of moderately large 
magnetic fields (n parallel to  H). 

Nematics flow easily (the viscosity is in the range of 10-1-10-2 poise) and the exten- 
sive recent experimental studies fit well with the hydrodynamic theory established by 
Leslie and Ericksen and complemented by Parodi. The interested reader will find an 
extensive presentation of the physics of liquid crystal in the book of de Gennes (1974) 
and in several recent review articles on the hydrodynamics of neinatics such as 
Jenkins (1978) and Dubois-Violette et al. (1978). Dubois-Violette & Manneville (1978) 
discuss theoretically the problem of cylindrical Couette flow instabilities in nematics 
and describe nematodynamics in an appendix. The notations are consistent with those 
used here. 

The experiments presented here were done on MBBA (methoxybenzilidene-p-n- 
butylaniline), a classic material which has a nematic phase between 17 and 47 "C and 
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which is commercially available. The experiments were carried out around a mean 
temperature of 25 "C. The material is contained between parallel horizontal plates 
coated with a surfactant (lecithin) to introduce a homeotropic alignment (n perpen- 
dicular to the plates). As the cell thickness in the experiment is rather large (d N 5 mm), 
a magnetic field perpendicular to the glass plates is also used to improve the homo- 
geneity of alignment. 

Thermal convection effects in such well-oriented horizontal nematic layers are 
drastically different from those obtained in homogeneous isotropic fluid layers heated 
from below (Normand, Pomeau & Velarde 1977). A most spectacular effect is the 
existence of a linear instability mode obtained in thick enough homeotropic films 
aligned by surface treatment and heated from above (Pieranski, Dubois-Violette & 
Guyon 1973). This instability has a fairly low threshold AT = T, - TL - (5 /d3) ,  
where d is the film thickness in mms, T, and TL refer to the temperature of the upper 
and lower plates. This case is rather unique in homogeneous materials as the 
density stratification is stable for such a sign of temperature gradient (the expansion 
coefficient OL = V-l aV/aT) is positive). The existence of such an instability rests on 
the coupling between the flow induced by the buoyant force due to an initial temper- 
ature fluctuation and a distortion of n created by gradients of this flow field. The heat 
conductivity of nematics is anisotropic (k, = k,, - k, is positive; 11 and I refer to the 
direction of the heat flux lines with respect to n) and the sense of the deflexion of the 
heat flux along the direction of n is such that the initial temperature fluctuation is 
reinforced. A physical reason for the existence of instability with a low threshold in 
this case as well as in purely hydrodynamic examples (Pieranski & Guyon 1974) can be 
found from a comparison of the time constants involved. The relaxation time of a 
velocity fluctuation, or more precisely a vorticity fluctuation, characterized by the 
dynamic viscosity v, as well as that of a temperature fluctuation measured by heat 
diffusivity~ are rather fast. (In nematics, typical time constants for a thickness 
d = 1 mm are t, N d2/7r2v = s, t, N d2/7r2K N 1 s.) On the other hand, the diffusive 
relaxation of a fluctuation of orientation taking place under the influence of the rather 
weak effect of an elastic torque (measured by a Frank elastic constant K )  opposed by 
viscous torques (measured by a rotational viscosity y )  is rather slow, to = 
yd2/7raK - 103 s for d = 1 mm. As usual in hydrodynamics, it  is the existence of 
slowly diffusive processes which ensures the existence of low instability thresholds. 

Quite recently, Lekkerkerker (1977) has pointed out that, in the homeotropic 
configuration used in the experiments of Pieranski, Dubois-Violette & Guyon (1973) 
if the nematic is heated from below, one does not expect the unfavourable coupling 
of the convective flow field with the director to increase the threshold above an iso- 
tropic value but rather to give rise to an oscillatory instability (overstability) above 
threshold. This possibility comes from the existence of a time scale from the relaxation 
of orientation to, which is associated with the stabilizing mechanism, large compared 
with the thermal time constant t ,  which connects with the destabilizing buoyancy 
force, which controls the isotropic mechanism. There is a phase lag between the 
orientation and temperature fluctuations which permits the occurrence of the destab- 
ilizing buoyancy effect together with the stabilizing orientational heat defocusing 
effect. 

Overstability has been discussed previously in the context of double diffusive 
phenomena (convection with a vertical gradient of composition as well as with a 
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temperature gradient). The relevant case is one in which a dense and more slowly 
diffusive component is a t  the bottom (stabilizing role) while the system is heated from 
below (destabilizing). In  this problem, the existence of a molecular-diffusion time 
constant long compared with the thermal one gives rise to overstability above a critical 
temperature gradient. The stable density stratification can be created during the 
filling of the cell with the solution (Turner 1974) by using a mixture with the appro- 
priate sign of Soret effect (which is the linear relation between the temperature gradient 
and the flux of matter). Two types of oscillations can then be obtained. Oscillations of 
steady amplitude (Platten & Chavepeyer (1972) were connected later (Hurle & Jake- 
man 1973) to effects possibly related to the cell geometry (oscillations were also ob- 
tained with pure liquids !). A possible mechanism involving the existence of a roll-cell 
circulation was related with a model by Busse (1972) describing an oscillatory insta- 
bility connected with vertical vorticity, a simple picture of the oscillation being a 
wave travelling along the axis of the convection rolls. The instability is obtained with 
low-Prandtl-number fluids (however, in nematics the Prandtl number P - lo2). 
Transient overstable oscillations were also obtained but only with the correct sign of 
Soret effect (see Hurle & Jakeman 1971; Platten & Chavepeyer, 1977). Above thres- 
hold, the amplitude of the oscillation grows until a finite-amplitude mode is triggered. 
In this problem, the overstable mechanism (obtained in a linear analysis) is also 
associated with an inverse bifurcation (which can be described from a nonlinear des- 
cription such as the numerical model of Platten & Chavepeyer (1977). The present 
experiments agree with this last type of description. Oscillations are observed which 
agree with the linear analysis of Lekkerkerker (1977). In  addition, characteristics of an 
inverted bifurcation similar to those of Platten & Chavepeyer (1  977) are obtained. An 
original feature of the present study using nematics is the possibility of varying the 
orientational time constant by several orders of magnitude by applying a magnetic 
field. In  particular, it  is possible to reduce to to values of the order oft,. The variation of 
threshold and period of oscillations are well described by a simple one-dimensional 
analysis, presented in $ 3, which reproduces the results of Lekkerkerker’s analysis and 
also includes the effect of a stabilizing field. The results of the experiments presented in 
$ 2 are analysed in the light of the theoretical analysis in $4. 

2. Experiments 
The convective flow cell containing the MBBA nematic liquid is shown in figure 1.  

The temperature gradient is created by circulating water a t  two different regulated 
temperatures on the outer faces of the nematic cell. We used two transparent 1 mm 
thick sapphire plates. The heat conductivity of the plates was of the order of 30 times 
larger than that of the 5 mm thick nematic film. This is an important precaution in 
order to ensure constant temperature boundary conditions: some relaxation oscilla- 
tions in thermal convection have been connected with a weaker ‘constant heat flux’ 
boundary condition when poorly conducting limiting plates were used (see Platten, 
Chavepayer & Tellier 1973). 

The homeotropic alignment of the nematic was obtained by precoating the inner 
faces of the plates with a thin lecithin film. We were not able to obtain a satisfactory 
uniform alignment on the thick films used (although 1 mm thick films could be well 
aligned using this technique) and the effect of a vertical magnetic fieId obtained from a 
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1 I -  
FIUURE 1. Experimental apparatus. The convective cell is contained in a coil (1) providing a 
vertical magnetic field. The water circulation (2) takes place between transparent glass (5) and 
aepphire (4) plates. The liquid crystal within the cell is homeotropic (6). Thermocouples (3) 
stretched across the cell and held to the 5 mm thick nylon spacer (7)  are used to characterize the 
oscillating behaviour. 

coil wound around the sample was added. With fields H larger than 30 G, a very homo- 
geneous alignment is obtained. This is verified by the observation of the character- 
istic conoscopic image obtained in converging monochromatic light between crossed 
polarizers (Hartshorne & Stuart 1970). 

Another test of the quaIity of the initial alignment was provided by studying the 
convection in the same 5 mm thick cell, heated from aborte. The critical threshold for 
this convection mode (discussed by Pieranski, Dubois-Violette & Guyon, 1973) in- 
creases quadratically with the applied stabilizing field, as expected (see figure 2). 
The extrapolated threshold for H = 0 is very small (less than 0.1 "C) as expected from 
the analysis of Dubois-Violette (1974) and the results obtained on a 1 mm thick cell 
(Pieranski, Dubois-Violette & Guyon 1973). However, the data obtained for fields 
smaller than 30 G are erratic, which indicates that the field is no longer able to oppose 
the spontaneous misalignment of the liquid crystal. 

The thickness was defined by a 5 mm thick nylon spacer. A series of parallel 80 pm 
thick chromel-alumel thermocouples was stretched across the cell at its mid-plane. 
The existence of the wires did not modify appreciably the onset of convection from 
regions where no wires were present. However, above threshold, the geometry of the 
rolls tends to adjust in such a way as to minimize the gradients along the direction of 
the wires. 

In the experiments the thermocouples were connected in pairs in a differential set- 
up. This was done in order to minimize the average temperature effects (in particular, 
the oscillations due to the water circulation regulation are of the order of 0.01 "C). 
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FIGURE 2. Variation of the threshold AT, obtained while heating from above in the presence of a 
vertical (stabilizing) magnetic field. The crosses correspond to the absence of convection and the 
circles to the presence of it, aa detected by visual inspection. 

FIGURE 3. Response of a thermocouple to a short ( N 30 s) heat pulse applied to a nearby wire. 
The decay time constant of the oscillation decreases m the threshold (ATc N 12.6') is approached 
from below. The field H = 465 G. 

The signal of the thermocouple was amplified using a Tekelec 925 nanovoltmeter and 
plotted on a set recorder. A typical curve is given in figure 3 in the presence of a vertical 
gradient just below the linear threshold. Initially, no instability is visible in the cell. A 
non-zero differential thermocouple indication comes from the fact that the thermo- 
couples are not exactly in the same horizontal plane, which results in a small residual 
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FIGURE 4. The director orientation and the curvature @ = d$/dx in the presence of a vertical 
velocity fluctuation w and temperature fluctuation 8. There is a de-phasing between @ and w or 8 
not indicated in the figure. 

vertical temperature difference. At time t = 0,  a short (30 s) heat pulse is applied on a 
resistive wire parallel to the two differential thermocouples. A pair of rolls is induced 
in symmetrical positions parallel to the wire. When the heat is suppressed, the oscilla- 
tion detected across the thermocouple is characteristic of the overstable behaviour as 
discussed below. Convection is easiIy detected optically. However, optical tests are 
not easily performed because of the high interference orders obtained even for small 
distortions (a distortion of 1 degree from homeotropic alignment corresponds to an 
optical path difference of 0.2 pm) and we will use only thermal thresholds although 
the order of magnitude and the nature of the effects obtained with both types of 
measurement agree. 

3. Model 
Rather than reproduce the analysis of Lekkerkerker (1977), we present a simple, 

although incomplete, approach based on a one-dimensional model which emphasizes 
the physical features of the problem in terms of the time constants. It also provides a 
first analysis of the behaviour in the presence of a magnetic field. Equations are 
similar to those introduced by Dubois-Violette, Guyon & Pieranski (1975). We con- 
sider the coupled interplay of fluctuations in the temperature 0, the vertical corn- 
ponent of the velocity w and the curvature $ = dq5/dx (the variables are defined in 
figure 4), retaining only their sinusoidal dependence in x ,  i.e. 

0/0, = w/wo = @I@,, = exp ( iqx ) ,  

with a single mode q = m/d (experiments show that the size of the rolls is nearly equal 
to the thickness of the cell). We use the reduced variables 

= W o / K L Q ,  f = t K I q 2 ,  $ = $o /Q,  6 = -6,,Q/p. 
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We note that /3 = aT/az is negative when heat is supplied from below. 
The following set of equations is obtained: 
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aE/at = - PG + R'PB, (1) 

aQat = - B+G-x@, (2) 

a$/aZ = - p$ + G. (3) 

The Prandtl number P = v/K N lo2. The velocity will follow the temperature fluctua- 
tion with the time scale ( K ~  q2)-l. The Rayleigh number is R' = - ga/3/KL vq4. (This 
definition is N of the usual definition R = - ga/3d4/K1 v). The parameters 

are characteristics of the nematic state. X is the ratio of the anisotropic part of the 
heat diffusivity (K, = K,, - K ~ )  to that perpendicular to the molecules K ~ .  It is of the 
order 0.7 in MBBA (Villanove et al. 1974); [is the ratio of the thermal time constant t ,  
to the orientational one to (H)  = y/(Kq2 + xaH2). (The formula for t , (H)  generalizes the 
expression of to ,  given above, in the case where a magnetic field H is applied along n. 
The effect of H is to stabilize n and thus reduce the relaxation time constant towards 
equilibrium.) The ratio 5 is small compared with 1 in the absence of a field (typically - However, it  becomes of order 1 for moderate values of the vertical (stabi- 
lizing) field: [ = 1 for H - 500 G and d = 5 mm. 

In the isotropic state the equations reduce to the Navier-Stokes equation ( 1 )  and 
to the heat equation (2) without the X$ term. The coupling is through the buoyancy 
effect RIP8 and the convective term G. Assuming the principle of exchange of stab- 
ilities, 8,8 cc exp (st) with s = O+ for R' = RA, we get the compatibility condition 

(-P+REP)#= 0 or RL= 1, (6) 

which is of the order of magnitude of the exact threshold with free boundaries 
(RA - 6.7 to 10 depending on the thermal boundary conditions). 

The equations in the nematic state are a one-dimensional transposition of the two- 
dimensional equations which come directly from linear hydrodynamic theory. Rather 
than reproduce a formal derivation we shall give a phenomenological description of the 
equation (Dubois-Violette 1974). The term - x$ accounts for the focusing mechanism 
due to the anisotropy of heat conductivity. One can see easily on figure 4 that in the 
central region I,I? < 0 the heat flux is deflected towards the centre ( + 0 point) if heat is 
supplied from below and if the heat diffusivity anisotropy, K, is positive. The new 
equation (3) describes the relaxation of the director. In the absence of coupling 
(neglecting E term) the equation expresses the diffusive relaxation of the director with 
a time constant to as it can be checked easily by using natural units. The additional 
term 63 expresses the coupling between the flow pattern and the distortion: in fact the 
dominant contribution to the hydrodynamic torque is az 8ula.z which comes from the 
gradient of u, the horizontal component of the velocity, and is larger than the contri- 
bution a3 aw/ax due to the gradient of w, the vertical component. a2 and a3 ( laal < la21) 
have the dimension of viscosity (de Gennes 1974). In the case in the figure the hydro- 
dynamic torque a2 au/az exerts a stabilizing role, i.e. tends to reduce the distortion. 
Qualitatively one could say that the heat-focusing action and flow -coupling effect tend 
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FIUURE 5. Variation of the reduced Rayleigh number R’ and frequency of oscillation & a8 a 
function of the quantity < defined in (5) .  

to oppose each other. One could see in very similar terms that if heat had been supplied 
from above (which would amount to replacing an + 8 effect by an - 8 effect from heat 
focusing) this mechanism and the flow coupling would have acted in the same sense, 
permitting the convection which is observed in homeotropic films heated from above. 
Using the result of the above discussion, one obtains the Iast term of equation (3) 
by replacing first aulaz by -awlax (a valid approximation for circular rolls) and 
by using the fact that the ratio -a2 /y ,  which comes from the balance between the 
hydrodynamic torque a2aw/ax and the viscous one ya@/at, is very nearly equal to one. 

We now assume in (1)-(3) a hierarchy of time constants such that P B 1 or {. Under 
these conditions, the velocity fluctuations follow the thermal ones and a solution of the 
set of equations can be obtained by setting a/at = 0 in (1) (an opposite limit 5 $ 1 or P, 
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obtained in very large fields, could be solved similarly by setting a/at = 0 in (3) with 
drastically different results). We get: 

(7) 

- 4XR‘ is positive, the growth state s(R’) is real and vanishes 

a 2 J / a ~ +  [g+ i - R’] a+/at+ g ( i  - R’) + XR’] $ = 0, 

We look for solutions J = exp [s(R‘) t ] .  

at a threshold 
(i) If A = (5- 1 + 

RI. = 1 + X / ( g - X ) ,  (8) 

which tends towards the isotropic value RE = 1 for large fields. In  this regime, the 
diffusivity of orientation is fast compared with the thermal diffusivity and the director 
follows the velocity field. However, the distortion of the director is limited by the field, 
and the increase of threshold due to the destabilizing heat defocusing effect becomes 
negligible in large fields. The condition A > 0 a t  threshold is first met for 

go = *x + *(X2+ 4X)k (9) 

For an anisotropy ratio X = 4, we get Q = 1. Inserting these values in (8) we get the 
smallest Rayleigh number giving a non-oscillating solution to be RE = 2. The variation 
of threshold above this value is a branch of the hyperbola on figure 5 which is a plot of 
R6 vus. 6 (or, in physical terms, versus H2) : 

(ii) If A < 0, the quantity 

= $((R‘ - 1 - y) i(4XR’ - (5- 1 + R’)2)*} 

is complex. The threshold is defined by 

R6 = I+[, (10) 

and by putting this value in the imaginary part of s we get the frequency of the oscilla- 
tion predicted by the linear theory a t  threshold : 

6 = 2{ - g 2  + X (  1 + y)p. (11) 

One checks indeed that the frequency vanishes for 5 = Q. 
When the relaxation of the director is slow compared with the thermal relaxation 

(5 < 1) the oscillations of I++ are in quadrature with that of w and the distortion does not 
modify the threshold from the isotropic value. The mechanism is clearly emphasized 
in Lekkerkerker’s paper (1977, figure I )  and resembles that obtained in the case of 
double diffusive phenomena where the density gradient is stabilizing against the 
unstable thermal one but has a much longer time scale. A new feature in the present 
problem is the possibility of adjustment of the ratio 5. When 6 approaches c,,, the two 
time constants become of the same order and the oscillating mechanism becomes less 
efficient: the threshold increases. The variation of threshold and frequency with field is 
plotted on figure 5 .  

The results in zero field [taking 6 N 0 in (1 l)] agree with the analysis of Lekkerkerker 
which gives the same threshold value and a frequency 

w, - P(SK,Kll)f, 

which is within a factor of 2 of formula (1  1) if one uses the real time scale t .  
Let us emphasize that the above linear analysis does not provide us with any 
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FIQ- 6. The variation of the amplitude of the temperature fluctuation EM a function of the 
Rayleigh number R shown schematically. The arrows indicate the direction of spontaneous 
evolution of the system. The hatched region refers to the linear regime. 

5 min - 

FIQURE 7. Spontaneous oscillating amplification of the instability for temperature gradients 
such that R 2 R,. The vertical line to the right corresponds to the irreversible evolution toward 
a strongly distorted state. 

information about nonlinear effects. In particular, a nonlinear analysis similar to that 
performed by Platten & Chavepeyer (1977) would be needed in order to describe the 
finite-amplitude branches associated with an inverse bifurcation. As no such treatment 
exists in the nematic case, we use the results of the analysis of Platten & Chavepeyer 
(1977) for the Soret problem which are sketched in figure 6. The linear regime, corres- 
ponding to the treatment given above, applies only if the amplitude of the fluctuations 
is small enough. Moreover, it  cannot give the sign of curvature of the linear branch next 
to R,. Our results are consistent with an inverse bifurcation mechanism such that an 
hysteretic behaviour is found between R, and R, when the gradient is increased or 
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FIQURE 8. Variation of the critical thresholds. +, AT, obtained in increasing gardient; 0, AT, 
obtained in decreasing gradient; both as a function of the applied field. The temperature is 
applied from below. 

decreased. We can understand the switching over between the linear and nonlinear 
branch, qualitatively, as follows: as the amplitude of the oscillations increases, it  
eventually perturbs so strongly the director orientation that the distortion orientation 
no longer relaxes to zero and its unfavourable focusing contribution is lost. At the same 
time, the oscillation disappears. This is indeed confirmed by experiments. 

4. Results and discussion 
4.1. Thresholds 

The temperature difference across the cell is very slowly increased. The value of the 
threshold is detected thermally by the occurrence of a transient oscillation followed by 
an irreversible change (decrease) of the temperature reading. An example of such 
variation is shown in figure 7. The decrease of temperature comes from the fact that, 
owing to convection, the temperature gradient in the bulk of the film decreases and the 
variation tends to be localized in boundary layers next to the wall. In  the steady state 
obtained just above this transition the convective structure is seen with a strong optical 
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FIGURE 9. A heat pulse of constant duration and power P is applied to  a wire in the cell. Circles 
indicate values too small to trigger the instability and crosses indicate values for which convec- 
tion was initiated through the cell after the heat pulse. The heavy vertical line indicates the 
threshold value AT, corresponding to the variation of figure 8.  The variation should be analysed 
qualitatively as coming from the unstable branch (u) on the variation of figure 6. 

contrast indicating that the distortion of the director is already quite large. We call 
AT, the critical threshold thus obtained in increasing gradient. 

Starting from such well-developed convection, the temperature difference is 
decreased. The convective image disappears only below a reduced value of the threshold 
AT,. The decrease is also associated with a discontinuous change in the thermocouple 
reading. The values of AT, and AT, obtained for different applied magnetic fields are 
given in figure 8. 

There is no model to describe the linear variation of AT, which corresponds to the 
threshold R, of figure 5 ,  but a dependence on H2 is likely from the form of [in ( 5 ) .  For 
the largest value of field, H = 650 G, the thresholds decrease again. The maximum 
corresponds to a value H, N 580 G. The variation can be compared with that of 
figure 5 and we tend to associate the value H, with [, defined in (9). 

This is also confirmed by the value of the ratio AT,(H,)/AT,(O) which we find experi- 
mentally to be of the order of 3. The numerical estimate using our simplified model 
gives a ratio of 2 for K a / K L  = 0.5 and 3 for K a / K L  = 1;  experimentally K , / K ~  N 0.7 
(Villanove et al. 1974). However, one cannot take the quantitative agreement too 
seriously, because the simplifications used in the one-dimensional analysis that extends 
the work of Lekkerkerker (1977) to account for the magnetic field dependence do not 
really permit a quantitative comparison, 

4.2. Hysteresis between AT, and AT, (R, and R,) 
If we increase the gradient to a value between AT, and AT., the ambient fluctuations do 
not reach sufficient amplitude to trigger the instability. One can initiate it by heating 
one of the wires stretched along the cell. If the heating power is small enough, we obtain 
a reversible change to the state of rest when the heat is suppressed. This is the result 
shown in figure 3. If the power supplied P is larger than a value depending on the 
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distance of A T  to AT, ,  we observe that the initial pair of rolls formcd along the wire 
progressively invades the cell by inducing other parallel rolls. The structure does not 
relax to the undisturbed state if the heat is suppressed. There is an irreversible 
evolution to the finite-amplitude branch. Coming back to figure 6 we see that the linear 
unstable branch is a marginal line for the two types of evolution characterized by the 
down and up going arrows. Figure 9 gives the limit of instability for different applied 
powers P and shows a variation qualitatively similar to the unstable branch (u) of 
figure 6. Unfortunately, it  is not possible, from the experiment, to connect in a simple 
way the applied power P to the amplitude A of the velocity fluctuation next to the 
wire; moreover the local temperature pattern is also modified by this heating. An 
experiment involving, the inducing effect of fluctuations of orientation caused by local 
electric fields, which does not have such drawbacks, is under way. 

4.3. Oscillatory behavicur 

One can easily study the oscillations associated with the onset of instability by first 
setting the gradient to a fixed value AT in the presence of a large enough stabilizing 
field HI (such that AT c AT,(H,)) and decreasing H suddenly to a value H, just above 
threshold ( A T  > A?(&)). The oscillation can be detected most easily from the 
thermocouple reading, but it can also be seen optically by the periodic disappearance 
of the convective structure in the cell at least as long as the amplitude of the distortion 
remains small enough. Next to threshold, several oscillations are observed before the 
nonlinear branch is attaincd, whereas, farther from it, only one or two oscillations are 
detected. A systematic study of the increase of the growth rate for increasing gradients 
is cumbersome because the defects induced in the cell after a finite-amplitude insta- 
bility has been reached do not relax rapidly to zero when the structure is erased by a 
large field. 

We have considered in detail the variation of the time rate below threshold by the 
technique sketched in figure 2. The decay signal read on the thermocouple follows 
very nearly a law of the form 

A exp ( - st) cos ot, (12) 

where s and w do not depend on the characteristics of the heat pulse as long as the 
power is small enough. 

4.3.1. Rate. Figure 10 gives the variation of s with AT for AT c ATc. It is consistent 
with a linear behaviour 

scc IAT,-ATI 

characteristic of a mean-field-like behaviour (we deal with a decay process and s is 
negative). This is a rather inaccurate fit. Very near threshold, the simple law (12) is not 
obeyed and one observes the variation of figure 3 (AT = 12-5 "C), where the amplitude 
first decreases and then remains constant for a long period of time; a t  the end, a finite- 
amplitude mode will be triggered, possibly because of some external fluctuations such 
as those coming from the temperature regulation. Farther from threshold (figure 
3 ( A T  = 11.8 "C)) the decay rate is too fast (typically when s > w )  to lead to a meaning- 
ful estimate of s. 

However, we wish to emphasize, a t  this point, that  we have recovered, a t  least 



78 E .  Guyon, P. Pieranski and J .  Salan 

- s ( ~ - I )  x 10-3 

FIQURE 10. Variation OFf--:, 0 of the decay rate 10 with the applied temperature 20 gradient , below threshold 

for an applied field H = 465 G. Errors are larger both near A T ,  (s + 0 )  where an exponential 
decay is not well obeyed and far below AT,  where the decay is fast ( - D large). 

I I I I I I I I 
10 20 30 40 

0 

~2 x 1 0 - 4  

FIQURE 11. Variation of frequency o of the oscillations versus applied field 
(oompare with the lower curve of figure 5). 

qualitatively, the essential characteristics expected from a linear analysis of the 
instability ‘A la Landau’ as was done beautifully in the case of direct bifurcation 
Rsyleigh-BBnard instability by Weisfreid et al. (1978), despite the fact that the 
present problem is concerned with an inverse bifurcation. We may also note that, from 
the local heating experiment, we also get an indication of the increase of the two- 
dimensional correlation length as the threshold is approached from below. Instead of 
the single pair of rolls formed along a heated wire, a progressively larger spatial extent 
of instability is observed when AT is approached (typically three pairs of rolls are seen 
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when AT,- AT N 0-3 "C). This feature will be analysed in detail in a further optical 
study. 

4.3.2. Period. An accurate determination of the period can be obtained near AT, 
because a large number of periods can be recorded. In the range of AT where several 
periods are visible, no appreciable variation of w is detected. This is consistent with the 
overstable picture which states that the threshold of instability is obtained when the 
equations of motion for the Fourier amplitudes (1)-(3) (also Lekkerkerker 1977, 
equations 4, 5) develop a pair of complex conjugate roots 0 & iw .  Next to threshold, 
the eigenvalues of the problem (s & i w )  are such that s vanishes linearly at  threshold 
whereas w is finite and only varies linearly with the distance to threshold. 

In figure 11 we have indicated the values of frequency w for different values of fields 
H .  The quasi-parabolic shape is strongly similar to the variation of figure 5. In  particu- 
lar, for the largest attainable threshold AG - 15" and H = 650 G the oscillatory 
behaviour has disappeared. The behaviour fits well with the simple analysis given in 
$2. We can associate the field Ho = 580 G which corresponds to the maximum of the 
critical gradient and is the first value such that w = 0 to the critical condition 

tO(H0) = 4- 

The value of the field agrees reasonably well with the numerical estimate H = 500 G 
for d = 5 mm given in $ 3  using average values of MBBA. Thus both threshold and 
frequency variations fit with the picture of figure 5 a t  least up to Ho. 

5. Conclusion 
In this article we have outlined some essential characteristics of an overstable 

instability using experiments on nematics. Once more, nematic liquid crystals provide 
an original tool for the study of hydrodynamic instabilities. The anisotropic visco- 
elastic behaviour of liquid crystals is well known now and merely introduces some 
analytical difficulties which were not considered in this 'first generation ' experiment. 
A main advantage in using, as a new variable, the director field is the fact that it can 
be acted upon easily by external fields. This feature has permitted a new approach to 
the overstability problem which enables us to control continuously within the same 
experiment the ratio of the two time constants involved. In  particular, the quenching 
of the oscillations obtained when the ratio is of the order of 1 seems to be inaccessible 
to double-diffusive phenomena as the ratio KID (the Lewis number) is generally much 
larger than 1 in liquids. This variation provides a new way of distinguishing the over- 
stability mechanism from the other causes of oscillations, met in Rayleigh-BBnard 
problems, that we had discussed in the introduction. 

Another point of emphasis in this work has been the characterization of the proper- 
ties of the instability around the linear threshold A% which does not seem to have been 
much studied in the Soret-effect experiments. This study is being pursued in Madrid 
by one of us (J. S.) along several lines indicated in the present work: the use of thicker 
cells (smaller gradients) will permit the description of the variations in the non- 
oscillating-quenched-oscillations range (to(H) < tT ) .  Emphasis will be put on the use 
of the director field itself both for the production of fluctuations to trigger the 
instability and for the characterization of the oscillations. This can be achieved by 
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interdigital electrodes deposited on the limiting plates, using capacitive techniques 
in a manner comparable with the Prost experiments (Prost & Pershan 1976). 

The present work is dedicated to the memory of Jean-Claude Lacroix whose 
beautiful Ph.D. work (I  976) on the inverse bifurcation in electrohydrodynamic oon- 
vection in liquids submitted to unipolar injection has provided us with a remarkable 
example of inverse bifurcation in convective phenomena. 

We thank Drs Velarde and Lekkerkerker for several illuminating discussions on this 
problem. 

Note. It has been pointed out to us by one of the referees that in the set of equations 
(1)-( 3) describing the coupling between velocity, temperature and orientation, one 
term, present in the analysis of Lekkerkerker (1977) and describing a linear coupling 
between the curvature of the distortion $ and the acceleration a8/af, is missing. Our 
analysis in fact reproduces that given by Dubois-Violette (I 974), for example, which 
considers the threshold for stationary instabilities (a@/at = 0). In  the present problem, 
dealing with a non-stationary instability, the rotation of n(a$/at =I= 0) induces a flow 
field. (This ‘ back-flow effect’ was observed and discussed in particular in the article by 
Pieranski, Brochard & Guyon (1973). This effect gives in (1) a contribution proportio- 
nal to a3 $, where a3 is a viscosity term. Eliminating this term using (3), we see that the 
consideration of ‘back flow ’ has two effects: (i) It renormalizes the viscosity (modifies 
the factor P 8  in (I)). As some flow is taking place as well as the director rotation, a 
reduced viscosity is usually obtained. Such an effect was analysed in detail in the above 
reference. (ii) It introduces in (1) a contribution proportional to $. However, as the 
time constant of the oscillation (measured by t t )  is much smaller than the natural time 
constant of the director (to), it  can be seen easily that the second contribution is 
small. 

After the submission of this article, an analytical description of the effect of the field 
of threshold was proposed by Lekkerkerker (to be published). His results agree well 
with our analysis leading to figure 5.  He finds that in a large magnetic field (Clarge) the 
value of threshold R’ is 10 % larger than the value for 6 = 0. The difference is due to the 
consideration of the backflow term. In  a recent numerical analysis by Zunega & 
Velarde (to be published) based on a Galerkin solution of various thermal convective 
problems in nematics, the same results as figure 5 were analysed following our first 
approach. 
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